Understanding the Role of Single Molecular ZnS Precursors in the Synthesis of In(Zn)P/ZnS Nanocrystals
详细信息    查看全文
文摘
Environmentally friendly nanocrystals (NCs) such as InP are in demand for various applications, such as biomedical labeling, solar cells, sensors, and light-emitting diodes (LEDs). To fulfill their potential applications, the synthesis of such high-quality 鈥済reen鈥?InP NCs required further improvement so as to achieve better stability, higher brightness NCs, and also to have a more robust synthesis route. The present study addresses our efforts on the synthesis of high-quality In(Zn)P/ZnS core鈥搒hell NCs using an air- and moisture-stable ZnS single molecular precursor (SMP) and In(Zn)P cores. The SMP method has recently emerged as a promising route for the surface overcoating of NCs due to its simplicity, high reproducibility, low reaction temperature, and flexibility in controlling the reaction. The synthesis involved heating the In(Zn)P core solution and Zn(S2CNR2) (where R = methyl, ethyl, butyl, or benzyl and referred to as ZDMT, ZDET, ZDBT, or ZDBzT, respectively) in oleylamine (OLA) to 90鈥?50 掳C for 0.5鈥?.5 h. In this work, we systematically studied the influence of different SMP end groups, the complex formation and stability between the SMP and oleylamine (OLA), the reaction temperature, and the amount of SMP on the synthesis of high-quality In(Zn)P/ZnS NCs. We found that thiocarbamate end groups are an important factor contributing to the low-temperature growth of high-quality In(Zn)P/ZnS NCs, as the end groups affect the polarity of the molecules and result in a different steric arrangement. We found that use of SMP with bulky end groups (ZDBzT) results in nanocrystals with higher photoluminescence quantum yield (PL QY) and better dispersibility than those synthesized with SMPs with the shorter alkyl chain groups (ZDMT, ZDET, or ZDBT). At the optimal conditions, the PL QY of red emission In(Zn)P/ZnS NCs is 55 卤 4%, which is one of the highest values reported. On the basis of structural (XAS, XPS, XRD, TEM) and optical characterization, we propose a mechanism for the growth of a ZnS shell on an In(Zn)P core.

Keywords:

core鈭抯hell; indium phosphide; zinc sulfide; single molecular precursor; complex; photoluminescence; quantum yield

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700