Formation of Interfacial Layer and Long-Term Cyclability of Li鈥揙2 Batteries
详细信息    查看全文
文摘
The long-term operation of Li鈥揙2 batteries under full discharge/charge conditions is investigated in a glyme-based electrolyte. The formation of stable interfacial layer on the electrode surface during the initial cycling stabilizes reaction products at subsequent cycling stages as demonstrated by quantitative analyses of the discharge products and the gases released during charging. There is a quick switch from the predominant formation of Li2O2 to the predominant formation of side products during the first few cycles. However, after the formation of the stable interfacial layer, the yield of Li2O2 in the reaction products is stabilized at about 33鈥?0%. Extended cycling under full discharge/charge conditions is achievable upon selection of appropriate electrode materials (carbon source and catalyst) and cycling protocol. Further investigation on the interfacial layer, which in situ forms on air electrode, may increase the long-term yield of Li2O2 during the cycling and enable highly reversible Li鈥揙2 batteries required for practical applications.

Keywords:

Li鈭扥2 battery; rechargeability; carbon nanotubes; Li2O2; cyclability

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700