Discharge Performance of Li鈥揙2 Batteries Using a Multiscale Modeling Approach
详细信息    查看全文
文摘
To study the discharge performance of Li鈥揙2 batteries, we propose a multiscale modeling framework that links models in an upscaling fashion from the nanoscale to mesoscale and finally to the device scale. We have effectively reconstructed the microstructure of a Li鈥揙2 air electrode in silico, conserving the porosity, surface-to-volume ratio, and pore size distribution of the real air electrode structure. The mechanism of rate-dependent morphology of Li2O2 growth is incorporated into the mesoscale model. The correlation between the active-surface-to-volume ratio and averaged Li2O2 concentration is derived to link different scales. The proposed approach鈥檚 accuracy is first demonstrated by comparing the predicted discharge curves of Li鈥揙2 batteries with experimental results at the high current density. Next, the validated modeling approach effectively captures the significant improvement in discharge capacity due to the formation of Li2O2 particles. Finally, it predicts the discharge capacities of Li鈥揙2 batteries with different air electrode microstructure designs and operating conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700