Controlling S2 Population in Cyanine Dyes Using Shaped Femtosecond Pulses
详细信息    查看全文
文摘
Fast population transfer from higher to lower excited states occurs via internal conversion (IC) and is the basis of Kasha’s rule, which states that spontaneous emission takes place from the lowest excited state of the same multiplicity. Photonic control over IC is of interest because it would allow direct influence over intramolecular nonradiative decay processes occurring in condensed phase. Here we tracked the S2 and S1 fluorescence yield for different cyanine dyes in solution as a function of linear chirp. For the cyanine dyes with polar solvation response IR144 and meso-piperidine substituted IR806, increased S2 emission was observed when using transform limited pulses, whereas chirped pulses led to increased S1 emission. The nonpolar solvated cyanine IR806, on the other hand, did not show S2 emission. A theoretical model, based on a nonperturbative solution of the equation of motion for the density matrix, is offered to explain and simulate the anomalous chirp dependence. Our findings, which depend on pulse properties beyond peak intensity, offer a photonic method to control S2 population thereby opening the door for the exploration of photochemical processes initiated from higher excited states.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700