Iterative Saturation Mutagenesis Accelerates Laboratory Evolution of Enzyme Stereoselectivity: Rigorous Comparison with Traditional Methods
详细信息    查看全文
文摘
Efficacy in laboratory evolution of enzymes is currently a pressing issue, making comparative studies of different methods and strategies mandatory. Recent reports indicate that iterative saturation mutagenesis (ISM) provides a means to accelerate directed evolution of stereoselectivity and thermostability, but statistically meaningful comparisons with other methods have not been documented to date. In the present study, the efficacy of ISM has been rigorously tested by applying it to the previously most systematically studied enzyme in directed evolution, the lipase from Pseudomonas aeruginosa as a catalyst in the stereoselective hydrolytic kinetic resolution of a chiral ester. Upon screening only 10000 transformants, unprecedented enantioselectivity was achieved (E = 594). ISM proves to be considerably more efficient than all previous systematic efforts utilizing error-prone polymerase chain reaction at different mutation rates, saturation mutagenesis at hot spots, and/or DNA shuffling, pronounced positive epistatic effects being the underlying reason.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700