Probing Photocurrent Generation, Charge Transport, and Recombination Mechanisms in Mesostructured Hybrid Perovskite through Photoconductivity Measurements
详细信息    查看全文
文摘
Conductivity of methylammonium lead triiodide (MAPbI3) perovskite was measured on different mesoporous metal oxide scaffolds: TiO2, Al2O3, and ZrO2, as a function of incident light irradiation and temperature. It was found that MAPbI3 exhibits intrinsic charge separation, and its conductivity stems from a majority of free charge carriers. The crystal morphology of the MAPbI3 was found to significantly affect the photoconductivity, whereas in the dark the conductivity is governed by the perovskite in the pores of the mesoporous scaffold. The temperature-dependent conductivity measurements also indicate the presence of states within the band gap of the perovskite. Despite a relatively large amount of crystal defects in the measured material, the main recombination mechanism of the photogenerated charges is bimolecular (band-to-band), which suggests that the defect states are rather inactive in the recombination. This may explain the remarkable efficiencies obtained for perovskite solar cells prepared with wet-chemical methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700