Potential Paths for the Hydrogen-Bond Relaxing with (H2O)N Cluster Size
详细信息    查看全文
文摘
Relaxation of the hydrogen bond (O:H鈥揙) between oxygen ions of undercoordinated molecules fascinates the behavior of water nanodroplets and nanobubbles. However, probing such potentials remains yet far from reality. Here we show that the Lagrangian solution (Huang et al. J. Phys. Chem. B 2013, 117, 13639) transforms the observed H鈥揙 bond (x = H) and O:H nonbond (x = L) lengths and their characteristic phonon frequencies (dx, 蠅x) (Sun et al. J. Phys. Chem. Lett. 2013, 4, 2565) into their respective force constants and cohesive energies (kx, Ex), which results in mapping of the potential paths for the O:H鈥揙 bond relaxing with (H2O)N cluster size. Results show that molecular undercoordination not only reduces its size (H鈥揙 length dH) with enhanced H鈥揙 energy from the bulk value of 3.97 to 5.10 eV for a H2O monomer but also enlarges their separation (O:H distance dL) with O:H energy reduction from 95 to 35 meV for a dimer. The H鈥揙 energy gain raises the melting point of water skin from the bulk value 273 to 310 K, and the O:H energy loss lowers the freezing temperature of a 1.4 nm sized droplet from the bulk value 258 to 202 K, which indicates droplet size induced dispersion of the quasisolid phase boundaries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700