High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage
详细信息    查看全文
文摘
The high performance of a pseudocapacitor electrode relies largely on a scrupulous design of nanoarchitectures and smart hybridization of bespoke active materials. We present a powerful two-step solution-based method for the fabrication of transition metal oxide core/shell nanostructure arrays on various conductive substrates. Demonstrated examples include Co3O4 or ZnO nanowire core and NiO nanoflake shells with a hierarchical and porous morphology. The 鈥渙riented attachment鈥?and 鈥渟elf-assembly鈥?crystal growth mechanisms are proposed to explain the formation of the NiO nanoflake shell. Supercapacitor electrodes based on the Co3O4/NiO nanowire arrays on 3D macroporous nickel foam are thoroughly characterized. The electrodes exhibit a high specific capacitance of 853 F/g at 2 A/g after 6000 cycles and an excellent cycling stability, owing to the unique porous core/shell nanowire array architecture, and a rational combination of two electrochemically active materials. Our growth approach offers a new technique for the design and synthesis of transition metal oxide or hydroxide hierarchical nanoarrays that are promising for electrochemical energy storage, catalysis, and gas sensing applications.

Keywords:

core/shell; nanowire arrays; cobalt oxide; nickel oxide; supercapacitor; electrochemical storage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700