High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots
详细信息    查看全文
文摘
Thin-film ultraviolet (UV) light-emitting diodes (LEDs) with emission wavelengths below 400 nm are emerging as promising light sources for various purposes, from our daily lives to industrial applications. However, current thin-film UV-emitting devices radiate not only UV light but also visible light. Here, we introduce genuine UV-emitting colloidal nanocrystal quantum dot (NQD) LEDs (QLEDs) using precisely controlled NQDs consisting of a 2.5-nm-sized CdZnS ternary core and a ZnS shell. The effective core size is further reduced during the shell growth via the atomic diffusion of interior Cd atoms to the exterior ZnS shell, compensating for the photoluminescence red shift. This design enables us to develop CdZnS@ZnS UV QLEDs with pure UV emission and minimal parasitic peaks. The irradiance is as high as 2.0鈥?3.9 mW cm鈥? at the peak wavelengths of 377鈥?90 nm, several orders of magnitude higher than that of other thin-film UV LEDs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700