Unique Temperature Dependence and Blinking Behavior of CdTe/CdSe (Core/Shell) Type-II Quantum Dots
详细信息    查看全文
文摘
Temperature dependent photoluminescence (PL) spectroscopy in a range of 5 K to room temperature (RT, 290 K) and single dot blinking behavior were investigated for CdTe/CdSe (core/shell, C/S) quantum dots (QDs). The QDs show type-II characteristics as both of the valence and conduction band levels of the CdTe core are placed higher in energy than those of the CdSe shell. The thickness of the CdSe shell was varied to control the degree of type-II character, and bare CdTe QDs were used as controls. The CdTe/CdSe (C/S) QDs have unique PL properties including (i) high susceptibility to PL thermal quenching with an exciton dissociation energy as small as 18 meV, compared with 46 meV for the CdTe QD, (ii) smaller band gap change showing only half the reduction of the control within the temperature change, and (iii) up to 27% larger PL bandwidth broadening than the control. The unique temperature-dependent properties were enhanced as the type-II character was increased by the thicker CdSe shell. Single dot level PL intermittency characteristics were studied for quasi type-II CdTe/CdSe (C/S) QDs that have alloyed layers at the core鈭抯hell interface. The quasi type-II QDs exhibited more frequent PL intensity intermittence blinking on and off at 290 K when compared with the CdTe QDs. However, the blinking kinetics follows similar universal power law on/off probability distributions with the 伪on and 伪off exponents evaluated as 1.57 and 1.38, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700