Work Function Measurement of Silicon Germanium Heterostructures Combining Kelvin Force Microscopy and X-ray Photoelectron Emission Microscopy
详细信息    查看全文
文摘
Work function in Si1鈥?i>xGex heterostructures with Ge content in the 6% to 49% range was studied with high energy resolution by combining Kelvin force microscopy and X-ray photoelectron emission microscopy. Although the two methods are based on distinct physical mechanisms, we show that both techniques give the same work function differences between each Si1鈥?i>xGex layer, as small as 20 meV. To detect such small work function differences, we put in evidence the necessity of preparing the Si1鈥?i>xGex sample surface with polishing, HF etching and Ar+ sputtering. Such surface preparation allows, in principle, to reduce the deleterious influence of surface states, coming for instance from carbon atoms or native oxide, on quantitative work function extraction. We show in this paper that even after such a sample surface preparation, a strong band bending can be present, which causes a contrast inversion on the surface of the material and yields an artificially lower surface work function with respect to theoretical values. By using density functional theory simulations, we demonstrate that such inversion is likely due to residual carbon present on the surface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700