Ion-Desorption Efficiency and Internal-Energy Transfer in Surface-Assisted Laser Desorption/Ionization: More Implication(s) for the Thermal-Driven and Phase-Transition-Driven Desorption Process
详细信息    查看全文
文摘
Fundamental factors governing the ion-desorption efficiency and extent of internal-energy transfer to a chemical thermometer, benzylpyridinium ion ([BP]+), generated in the surface-assisted laser desorption/ionization (SALDI) process, were systematically investigated using noble metal nanoparticles (NPs), including AuNPs, AgNPs, PdNPs, and PtNPs, as substrates, with an average particle size of 1.7鈥?.1 nm in diameter. In the correlation of ion-desorption efficiency and internal-energy transfer with physicochemical properties of the NPs, laser-induced heating of the NPs, which are dependent on their photoabsorption efficiencies, was found to be a key factor in governing the ion-desorption efficiency and the extent of internal-energy transfer. This suggested that the thermal-driven desorption played a significant role in the ion-desorption process. In addition, a stronger binding affinity of [BP]+ to the surface of the NPs could hinder its desorption from the NPs, and this could be another factor in determining the ion-desorption efficiency. Moreover, metal NPs with lower melting points could also facilitate the ion-desorption process via the phase-transition process, which could lower the activation barrier (螖G#) of the ion-desorption process by increasing the entropic change (螖S#). The study reveals that high photoabsorption efficiency, weak binding interaction with analyte molecule, and low melting point could be critical for the design of SALDI substrates with efficient ion desorption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700