Effects of Proteins on Protein Diffusion
详细信息    查看全文
  • 作者:Yaqiang Wang ; Conggang Li ; Gary J. Pielak
  • 刊名:Journal of the American Chemical Society
  • 出版年:2010
  • 出版时间:July 14, 2010
  • 年:2010
  • 卷:132
  • 期:27
  • 页码:9392-9397
  • 全文大小:249K
  • 年卷期:v.132,no.27(July 14, 2010)
  • ISSN:1520-5126
文摘
Despite increased attention, little is known about how the crowded intracellular environment affects basic phenomena like protein diffusion. Here, we use NMR to quantify the rotational and translational diffusion of a 7.4-kDa test protein, chymotrypsin inhibitor 2 (CI2), in solutions of glycerol, synthetic polymers, proteins, and cell lysates. As expected, translational diffusion and rotational diffusion decrease with increasing viscosity. In glycerol, for example, the decrease follows the Stokes−Einstein and Stokes−Einstein−Debye laws. Synthetic polymers cause negative deviation from the Stokes laws and affect translation more than rotation. Surprisingly, however, protein crowders have the opposite effect, causing positive deviation and reducing rotational diffusion more than translational diffusion. Indeed, bulk proteins severely attenuate the rotational diffusion of CI2 in crowded protein solutions. Similarly, CI2 diffusion in cell lysates is comparable to its diffusion in crowded protein solutions, supporting the biological relevance of the results. The rotational attenuation is independent of the size and total charge of the crowding protein, suggesting that the effect is general. The difference between the behavior of synthetic polymers and protein crowders suggests that synthetic polymers may not be suitable mimics of the intracellular environment. NMR relaxation data reveal that the source of the difference between synthetic polymers and proteins is the presence of weak interactions between the proteins and CI2. In summary, weak but nonspecific, noncovalent chemical interactions between proteins appear to fundamentally impact protein diffusion in cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700