Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating
详细信息    查看全文
  • 作者:Jonas Croissant ; Jeffrey I. Zink
  • 刊名:The Journal of the American Chemical Society
  • 出版年:2012
  • 出版时间:May 9, 2012
  • 年:2012
  • 卷:134
  • 期:18
  • 页码:7628-7631
  • 全文大小:319K
  • 年卷期:v.134,no.18(May 9, 2012)
  • ISSN:1520-5126
文摘
The synthesis and operation of a light-operated nanovalve that controls the pore openings of mesoporous silica nanoparticles containing gold nanoparticle cores is described. The nanoparticles, consisting of 20 nm gold cores inside 150 nm mesoporous silica spheres, were synthesized using a unique one-pot method. The nanovalves consist of cucurbit[6]uril rings encircling stalks that are attached to the 2 nm pore openings. Plasmonic heating of the gold core raises the local temperature and decreases the ring鈥搒talk binding constant, thereby unblocking the pore and releasing the cargo molecules that were preloaded inside. Bulk heating of the suspended particles to 60 掳C is required to release the cargo, but no bulk temperature change was observed in the plasmonic heating release experiment. High-intensity irradiation caused thermal damage to the silica particles, but low-intensity illumination caused a local temperature increase sufficient to operate the valves without damaging the nanoparticle containers. These light-stimulated, thermally activated, mechanized nanoparticles represent a new system with potential utility for on-command drug release.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700