Dramatically Increased pH and Temperature Stability of Chymotrypsin Using Dual Block Polymer-Based Protein Engineering
详细信息    查看全文
文摘
In this study, we report on multimodal temperature-responsive chymotrypsin-poly(sulfobetaine methacrylamide)-block-poly(N-isopropylacrylamide) (CT-pSBAm-block-pNIPAm) protein鈥損olymer conjugates. Using polymer-based protein engineering (PBPE) with aqueous atom transfer radical polymerization (ATRP), we synthesized three different molecular weight CT-pSBAm-block-pNIPAm bioconjugates that responded structurally to both low and high temperature. In the block copolymer grown from the surface of the enzyme, upper critical solution temperature (UCST) phase transition was dependent on the chain length of the polymers in the conjugates, whereas lower critical solution temperature (LCST) phase transition was independent of molecular weight. Each CT-pSBAm-block-pNIPAm conjugate showed temperature dependent changes in substrate affinity and productivity when assayed from 0 to 40 掳C. In addition, these conjugates showed higher stability to harsh conditions, including temperature, low pH, and protease degradation. Indeed, the PBPE-modified enzyme was active for over 8 h in the presence of a stomach protease at pH 1.0. Using PBPE, we created a dual zone shell surrounding each molecule of enzyme. The thickness of each zone of the shell was engineered to be separately responsive to temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700