Neurocytometry: Flow Cytometric Sorting of Specific Neuronal Populations from Human and Rodent Brain
详细信息    查看全文
文摘
Flow cytometry has the potential to facilitate understanding of the heterogeneous responses of diverse brain cell populations to a variety of stimuli. However, existing methods of applying flow cytometry to brain tissues are each limited in certain ways. They either require genetically labeled cells to achieve separation of specific populations, are not applicable to previously fixed tissue, or are not compatible with downstream mRNA analysis. Here, we describe a group of related methods that overcome many previous limitations and allow robust sorting and downstream molecular analysis of highly enriched populations of specific neuronal and non-neuronal cells from any mammalian brain. We illustrate these techniques, which are compatible with antibodies for both nuclear and non-nuclear epitopes and do not require transgenic animals, with three examples. First, we describe the separation and downstream mRNA analysis of four types of cortical interneurons (somatostatin, parvalbumin, calretinin, and calbindin) from paraformaldehyde-fixed rat brain sections. Second, we demonstrate separation of neurons and non-neurons from zinc-fixed mouse brain cortical sections followed by analysis of enzymatic activity (ACE2 activity) and mRNA expression. Third, we show that routinely fixed post-mortem human brain can be analyzed by isolating parvalbumin-containing neurons from cortical samples that were fixed for periods of up to 8 weeks in formalin. In each case, sorted cell identity was confirmed with mRNA analysis. The neurocytometry methodology described here has the potential to significantly expand studies to analyze the effects of drugs, environmental manipulations, and disease states on the nucleic acid and protein content of specific brain cell populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700