用户名: 密码: 验证码:
Solvation of Palladium Clusters in an Ionic Liquid: A QM/MM Molecular Dynamics Study
详细信息    查看全文
文摘
The mechanism of solvation and stabilization of palladium nanoparticles in the 1,3-dimethylimidazolium tetrafluoroborate ionic liquid (IL) has been studied using a combination of density functional theory and molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanical (QM/MM) potentials. It is shown that the IL induces a strong polarization in Pd6 and Pd19 clusters, which were taken as computationally tractable models of palladium nanoparticles. The clusters have large induced dipole moments and, as a result, interact strongly with the IL. MD simulations demonstrate an accumulation of the IL layer of high density and a negative charge around the Pd6 and Pd19 clusters as a result of interactions with the anions of the IL. A single palladium atom does not show any noticeable preference for the positive or negative ions and interacts only very weakly with the IL, which can, to some extent, protect the palladium atom from the energetically favorable process of aggregation into Pd clusters only sterically.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700