Functionally Distinct Bacterial Cytochrome c Peroxidases Proceed through a Common (Electro)catalytic Intermediate
详细信息    查看全文
文摘
The diheme cytochrome c peroxidase from Shewanella oneidensis (So CcP) requires a single electron reduction to convert the oxidized, as-isolated enzyme to an active conformation. We employ protein film voltammetry to investigate the mechanism of hydrogen peroxide turnover by So CcP. When the enzyme is poised in the active state by incubation with sodium l-ascorbate, the graphite electrode specifically captures a highly active state that turns over peroxide in a high potential regime. This is the first example of an on-pathway catalytic intermediate observed for a bacterial diheme cytochrome c peroxidase that requires reductive activation, consistent with the observed voltammetric response from the diheme cytochrome c peroxidase from Nitrosomonas europaea (Ne), which is constitutively active and does not require the same one electron activation. Mutational analysis at the active site of So CcP confirms that the rate-limiting step involves a proton-coupled single electron reduction of a high valent iron species centered on the low-potential heme, consistent with the same mutation in Ne CcP. The pH dependence of catalysis for wild-type So CcP suggests that reduction shifts the pKa’s of at least two amino acids. Mutation of His81 in “loop 1”, a surface exposed loop thought to shift conformation during the reductive activation process, eliminated one of the pH dependent features, confirming that the loop 1 shifts, changing the environment of His81 during the rate-limiting step. The observed catalytic intermediate has the same electron stoichiometry and similar pH dependence to that previously reported for Ne CcP, which is constitutively active and therefore hypothesized to follow a different catalytic mechanism. The prominent similarities between the rate-limiting steps of differing mechanistic classes of bCcPs suggest unexpected similarities in the intermediates formed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700