Chemical Treatment of Poly(lactic acid) Fibers to Enhance the Rate of Thermal Depolymerization
详细信息    查看全文
文摘
When heated, poly(lactic acid) (PLA) fibers depolymerize in a controlled manner, making them potentially useful as sacrificial fibers for microchannel fabrication. Catalysts that increase PLA depolymerization rates are explored and methods to incorporate them into commercially available PLA fibers by a solvent mixture impregnating technique are tested. In the present study, the most active catalysts are identified that are capable of lowering the depolymerization temperature of modified PLA fibers by ca. 100 掳C as compared to unmodified ones. Lower depolymerization temperatures allow PLA fibers to be removed from a fully cured epoxy thermoset resin without causing significant thermal damage to the epoxy. For 500 渭m diameter PLA fibers, the optimized treatment involves soaking the fibers for 24 h in a solvent mixture containing 60% trifluoroethanol (TFE) and 40% H2O dispersed with 10 wt % tin(II) oxalate and subsequent air-drying of the fibers. PLA fibers treated with this procedure are completely removed when heated to 180 掳C in vacuo for 20 h. The time evolution of catalytic depolymerization of PLA fiber is investigated by gel permeation chromatography (GPC). Channels fabricated by vaporization of sacrificial components (VaSC) are subsequently characterized by scanning electron microscopy (SEM) and X-ray microtomography (Micro CT) to show the presence of residual catalysts.

Keywords:

poly(lactic acid) (PLA); sacrificial fiber; microvascular network; thermal depolymerization; composites

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700