Role of Structure and Microporosity in Phenanthrene Sorption by Natural and Engineered Organic Matter
详细信息    查看全文
文摘
Natural sorbents including one humic acid (HA), humins (HMs), nonhydrolyzable carbons (NHCs), and engineered sorbents (biochars) were subject to bleaching to selectively remove a fraction of aromatic C. The structural properties and sorption isotherm data of phenanthrene (Phen) by original and bleached sorbents were obtained. Significant correlations between Phen Koc values by all sorbents and their organic carbon (OC)-normalized CO2 cumulative surface area (CO2鈥揝A/OC) suggested that nanopore-filling mechanism could dominate Phen sorption. After bleaching, natural sorbents still contained large amounts of aromatic C, which are resistant to bleaching, suggesting that they are derived from condensed or nonbiodegradable organic matter (OM). After eliminating the effect of aromatic C remaining in the bleached samples, a general trend of increasing CO2鈥揝A/OC of natural sorbents with increasing aliphaticity was observed, suggesting that nanopores of natural sorbents are partially derived from their aliphatic moieties. Conversely, positive relationships between CO2鈥揝A/OC or Phen logKoc of engineered sorbents and their aromaticity indicated the aromatic structures of engineered sorbents primarily contribute to their nanopores and dominate their sorption of HOCs. Therefore, this study clearly demonstrated that the role of structure and microporosity in Phen sorption is dependent on the sources of sorbents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700