Influence of Electronic Spin and Spin鈥揙rbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
详细信息    查看全文
文摘
Enabling the rational synthesis of molecular candidates for quantum information processing requires design principles that minimize electron spin decoherence. Here we report a systematic investigation of decoherence via the synthesis of two series of paramagnetic coordination complexes. These complexes, [M(C2O4)3]3鈥?/sup> (M = Ru, Cr, Fe) and [M(CN)6]3鈥?/sup> (M = Fe, Ru, Os), were prepared and interrogated by pulsed electron paramagnetic resonance (EPR) spectroscopy to assess quantitatively the influence of the magnitude of spin (S = 1/2, 3/2, 5/2) and spin鈥搊rbit coupling (味 = 464, 880, 3100 cm鈥?) on quantum decoherence. Coherence times (T2) were collected via Hahn echo experiments and revealed a small dependence on the two variables studied, demonstrating that the magnitudes of spin and spin鈥搊rbit coupling are not the primary drivers of electron spin decoherence. On the basis of these conclusions, a proof-of-concept molecule, [Ru(C2O4)3]3鈭?/sup>, was selected for further study. The two parameters establishing the viability of a qubit are a long coherence time, T2, and the presence of Rabi oscillations. The complex [Ru(C2O4)3]3鈥?/sup> exhibits both a coherence time of T2 = 3.4 渭s and the rarely observed Rabi oscillations. These two features establish [Ru(C2O4)3]3鈥?/sup> as a molecular qubit candidate and mark the viability of coordination complexes as qubit platforms. Our results illustrate that the design of qubit candidates can be achieved with a wide range of paramagnetic ions and spin states while preserving a long-lived coherence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700