Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements
详细信息    查看全文
文摘
In a region heavily influenced by anthropogenic and biogenic atmospheric emissions, recent field measurements have attributed one-third of urban organic aerosol by mass to isoprene epoxydiols (IEPOX). These aerosols arise from the gas-phase oxidation of isoprene, the formation of IEPOX, the reactive uptake of IEPOX by particles, and finally the formation of new compounds in the aerosol phase. Using a continental-scale chemical transport model, we find a strong temporal correspondence between the simulated formation of IEPOX-derived organic aerosol and these measurements. However, because only a subset of isoprene-derived aerosol compounds have been specifically identified in laboratory studies, our simulation of known IEPOX-derived organic aerosol compounds predicts a mass 10-fold lower than the field measurements, despite abundant gas-phase IEPOX. Sensitivity studies suggest that increasing the effective IEPOX uptake coefficient and including aerosol-phase reactions that lead to the addition of functional groups could increase the simulated IEPOX-derived aerosol mass and account for the difference between the field measurements and modeling results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700