Synthesis and Toll-like Receptor 4 (TLR4) Activity of Phosphatidylinositol Dimannoside Analogues
详细信息    查看全文
文摘
A series of five PIM2 analogues were synthesized and tested for their ability to activate primary macrophages and modulate LPS signaling. Structural changes included replacement of the fatty acid esters of the phosphatidyl moiety of PIM2 with the corresponding ether or amide. An AcPIM2 analogue possessing an ether linkage was also prepared. The synthetic methodology utilized an orthogonally protected chiral myo-inositol starting material that was conveniently prepared from myo-inositol in just two steps. Important steps in the synthetic protocols included the regio- and 伪-selective glycosylation of inositol O-6 and introduction of the phosphodiester utilizing phosphoramidite chemistry. Replacement of the inositol core with a glycerol moiety gave compounds described as phosphatidylglycerol dimannosides (PGM2). Biological testing of these PIM compounds indicated that the agonist activity was TLR4 dependent. An ether linkage increased agonist activity. Removal of the inositol ring enhanced antagonist activity, and the presence of an additional lipid chain enhanced LPS-induced cytokine production in primary macrophages. Furthermore, the interruption of the LPS-induced 2:2 TLR4/MD-2 signaling complex formation by PIM2 represents a previously unidentified mechanism involved in the bioactivity of PIM molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700