Plasmonic Nanoantennas for Multispectral Surface-Enhanced Spectroscopies
详细信息    查看全文
文摘
Plasmonic nanoantennas provide new routes for efficiently detecting, analyzing, and monitoring single biomolecules via fluorescence, Raman, and infrared absorption spectroscopies. The development of efficient biosensors for multispectral spectroscopy remains nevertheless limited by the narrowband responses of plasmonic devices, as they are generally designed to operate in a specific bandwidth, matching with the absorption, scattering, or emission frequency of target biomolecules under investigation. Therefore, performing biosensing from visible to infrared frequencies systematically requires designing and fabricating multiple plasmonic nanoantenna configurations and prevents the development of nanoscale integrated sensors for multispectral probing of random chemical species. Here, we propose to overcome these limitations by using broadband log-periodic nanoantennas designed to generate significant electromagnetic intensity enhancements from the visible to the mid-IR wavelength regions. We demonstrate simultaneous surface-enhanced fluorescence, Raman, and infrared absorption spectroscopies for biomolecules functionalized on top of single nanoantennas, which opens new opportunities for the development of integrated devices suitable for multispectral biosensing on the same chip.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700