Effects of Electric Field on the Vapor鈥揕iquid Equilibria of Nanoconfined Methanol and Ethanol
详细信息    查看全文
文摘
The effects of the electric field on the vapor鈥搇iquid equilibria of methanol and ethanol confined in a graphitic slit pore of width 4 nm using molecular dynamics simulations are reported. The vapor鈥搇iquid critical temperature of methanol gets suppressed under confinement. The external electrical field further decreases the critical temperature with increasing electric field strength up to E = 1.5 V路nm鈥?. Surprisingly, a further increase in the electric field strength reverses the critical temperature behavior and is seen to increase with increasing electric field. The reversible behavior of the critical temperature with the electric field is also seen for nanoconfined ethanol at approximately 1.5 V路nm鈥?. The critical density, on the other hand, is found to continuously decrease with increasing electric field strength. Application of an external electric field results in the decrease in vapor and liquid densities. The coordination number in the liquid phase is found to decrease first with increasing electric field until E = 1.5 V路nm鈥? and then increases with a further increase in the electric field, confirming the observed trend in the critical temperature according to the mean field theory. Orientational order of nanoconfined methanol and ethanol, on the other hand, is found to increase with increasing electric field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700