Observing Nucleation Transition in Stretched Natural Rubber through Self-Seeding
详细信息    查看全文
文摘
Potential competition between fringed-micelle nucleation (N1) and folded-chain nucleation (N2) widely exists in strain-induced crystallization (SIC). However, during uniaxial deformation, no in situ observational evidence of nucleation transition from N2 to N1 in SIC of natural rubber (NR) has been reported yet. In this work, self-seeding provides an effective way for this observation. By the introduction of residual TIC (temperature-induced crystallization)-melting crystallites into pure NR system, in situ synchronic WAXD revealed the formation of low-oriented crystal in the initial deformation stage, which gradually evolves into highly oriented crystal at last. The low-oriented crystal is related to secondary folded-chain nucleation (N2) on the surface of residual TIC-melting crystallites (self-seeding), while newly formed highly oriented crystal is associated with N1. For the first time, the concept of 鈥渟elf-seeding鈥?is innovatively applied to SIC process so that NR exhibits clear nucleation transition phenomenon. Further, theoretical computation of nucleation barrier in the special NR system well reflects that self-seeding has the role of both increasing critical strain of nucleation transition and decreasing onset strain of SIC, thus providing conditions for the observation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700