Near-Infrared Luminescent PMMA-Supported Metallopolymers Based on Zn鈥揘d Schiff-Base Complexes
详细信息    查看全文
文摘
On the basis of self-assembly from the divinylphenyl-modified Salen-type Schiff-base ligands H2L1 (N,N鈥?bis(5-(3鈥?vinylphenyl)-3-methoxy-salicylidene)ethylene-1,2-diamine) or H2L2 (N,N鈥?bis(5-(3鈥?vinylphenyl)-3-methoxy-salicylidene)phenylene-1,2-diamine) with Zn(OAc)2路2H2O and Ln(NO3)3路6H2O in the presence of pyridine (Py), two series of heterobinuclear Zn鈥揕n complexes [Zn(Ln)(Py)Ln(NO3)3] (n = 1, Ln = La, 1; Ln = Nd, 2; or Ln = Gd, 3 and n = 2, Ln = La, 4; Ln = Nd, 5; or Ln = Gd, 6) are obtained, respectively. Further, through the physical doping and the controlled copolymerization with methyl methacrylate (MMA), two kinds of PMMA-supported hybrid materials, doped PMMA/[Zn(Ln)(Py)Ln(NO3)3] and Wolf Type II Zn2+鈥揕n3+-containing metallopolymers Poly(MMA-co-[Zn(Ln)(Py)Ln(NO3)3]), are obtained, respectively. The result of their solid photophysical properties shows the strong and characteristic near-infrared (NIR) luminescent Nd3+-centered emissions for both PMMA/[Zn(Ln)(Py)Nd(NO3)3] and Poly(MMA-co-[Zn(Ln)(Py)Nd(NO3)3]), where ethylene-linked hybrid materials endow relatively higher intrinsic quantum yields due to the sensitization from both 1LC and 3LC of the chromorphore than those from only 1LC in phenylene-linked hybrid materials, and the concentration self-quenching of Nd3+-based NIR luminescence could be effectively prevented for the copolymerized hybrid materials in comparison with the doped hybrid materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700