Clay Mediated Route to Natural Formation of Polychlorodibenzo-p-dioxins
详细信息    查看全文
文摘
Recent studies have documented the ubiquitous occurrence of polychlorodibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of unknown origin in soils and clay deposits. Interestingly, the PCDD/F congener profiles do not match any known natural or anthropogenic source, and global PCDD/F budgets fail to account for the observed levels in soils. To reconcile these observations, clay minerals had been hypothesized to play a central role in the natural in situ synthesis of PCDD/Fs. We recently demonstrated the clay-mediated formation of the most prevalent PCDD congener in soils, octachlorodibenzo-p-dioxin (OCDD), supporting this hypothesis. Here we report the formation of the direct precursors (鈥減redioxins鈥? of the most toxic PCDD congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), and of 1,2,4,7,8-pentachlorodizenzodioxin (1,2,4,7,8-PeCDD), and two additional dimers, from the reaction of 2,4,5-trichlorophenol (2,4,5-TCP) with Fe(III)-montmorillonite clay. We propose plausible reaction pathways, each initiated by single electron transfer from 2,4,5-TCP to Fe(III)-montmorillonite forming the 2,4,5-TCP radical cation. The operative reaction mechanisms, inferred from experimental results, are supported by quantum mechanical calculations. The key role of montmorillonite is apparently to stabilize the reactive radical cation intermediate. Fortuitously, PCDD formation reactions on clay surfaces are more facile for less toxic higher chlorinated congeners like OCDD, as predicted by the proposed reaction mechanism and consistent with the observed PCDD congener distributions in soils. Importantly, increasing the toxicity equivalency factor of OCDD would immediately cause many soils to exceed PCDD regulatory levels due to the predominance of this congener.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700