Hybrids of Reduced Graphene Oxide and Hexagonal Boron Nitride: Lightweight Absorbers with Tunable and Highly Efficient Microwave Attenuation Properties
详细信息    查看全文
文摘
Sandwichlike hybrids of reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN) were prepared via heat treatment of the self-assemblies of graphene oxide (GO) and ammonia borane (AB). TG-DSC-QMS analysis indicate a mutually promoted redox reaction between GO and AB; 900 °C is a proper temperature to transfer the hybrids into inorganic sandwiches. XRD, XPS, and Raman spectra reveal the existence of h-BN embedded into the rGO frameworks. High-resolution SEM and TEM indicate the layer-by-layer structure of the hybrids. The content of h-BN can be increased with increase of the mass ratio of AB and the highest heat treatment temperature. The complex permittivity and the microwave absorption are tunable with the variation of the content of h-BN. When the mass ratio of GO/AB is 1:1, the microwave absorption of the hybrid treated at 900 °C is preferable in the range of 6–18 GHz. A minimum reflection loss, −40.5 dB, was observed at 15.3 GHz for the wax composite filled with 25 wt % hybrids at the thickness of 1.6 mm. The qualified frequency bandwidth reaches 5 GHz at this thickness with a low surface density close to 1.68 kg/m2. The layer-by-layer structure of the hybrid makes great contributions to the increased approaches and possibilities of electron migrating and hopping, which has both highly efficient dielectric loss and excellent impedance matching for microwave consumption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700