High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks
详细信息    查看全文
文摘
A simple, high-concentration (up to 0.6 M Cu salt) synthesis of sub-10-nm copper nanoparticles (Cu NPs) was developed in ethylene glycol at room temperature under ambient air conditions using 1-amino-2-propanol (AmIP) as the stabilizer. Monodispersed AmIP-Cu NPs of 3.5 卤 1.0 nm were synthesized in a high yield of 鈭?0%. Thus, nearly 1 g of sub-10-nm Cu NP powder was obtained using a one-step synthesis for the first time. It is proposed that metallacyclic coordination stability of a five-membered ring type between the Cu and AmIP causes the high binding force of Am IP onto the Cu surface, resulting in the superior stability of the AmIP-Cu NPs in a solution. The purified powder of AmIP-Cu NPs can be redispersed in alcohol-based solvents up to high Cu contents of 45 wt % for the preparation of Cu nanoink. The resistivity of the conductive Cu film obtained from the Cu nanoink was 30 渭惟 cm after thermal heating at 150 掳C for 15 min under a nitrogen flow. The long-term resistance stability of the Cu film under an air atmosphere was also demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700