New Synthetic Approach for Optically Active Polymer Bearing Chiral Cyclic Architecture: Combination of Asymmetric Allylic Amidation and Ring-Closing Metathesis Reaction
详细信息    查看全文
文摘
A new synthetic approach for optically active polymer-bearing chiral cyclic architecture is described. The polymer is prepared by a combination of asymmetric allylic amidation catalyzed by planar-chiral ruthenium (Cp鈥睷u) complexes and ring-closing metathesis (RCM) reaction. We have designed bifunctional monomers bearing allylic chloride and N-alkoxyamide possessing an olefinic moiety, and the resulting polymer provides two olefinic moieties for RCM reactions in each monomer unit. These monomers are smoothly polymerized by Cp鈥睷u catalyst with quantitative conversion to afford the desired optically active polymer with high regio- and enantioselectivities. The resulting polymer is easily converted to one chiral cyclic structure (3,6-dihydro-2H-oxazine) per monomer unit via RCM catalyzed by the second-generation Hoveyda鈥揋rubbs catalyst. Additionally, the polymerization system is applicable to various monomers, which afford optically active polymers possessing several types of main chain and side chain structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700