Expression, Cross-Linking, and Characterization of Recombinant Chitin Binding Resilin
详细信息    查看全文
文摘
Resilin is a polymeric rubber-like protein secreted by insects to specialized cuticle regions, in areas where high resilience and low stiffness are required. Resilin binds to the cuticle polysaccharide chitin via a chitin binding domain and is further polymerized through oxidation of the tyrosine residues resulting in the formation of dityrosine bridges and assembly of a high-performance protein−carbohydrate composite material. We describe the mechanical, structural and biochemical function of chitin binding recombinant Drosophila melanogaster resilin. Various resilin constructs were cloned including the full length gene enabling Ni-NTA purification, as well as heat and salt precipitation for rapid and efficient purification. The binding isotherms and constants (Kd, Bmax) of resilin to chitin via its chitin binding domain were determined and displayed high affinity to chitin, implying its important role in the assembly of the resilin-chitin composite. The structural and elastic properties were investigated using Fourier transform infrared spectroscopy, circular dichroism, and atomic force microscopy with peroxidase cross-linked solid resilin materials. Generally, little structural organization was found by these biophysical methods, suggesting structural order was not induced by the dityrosine cross-links. Further, the elastomeric properties found from the full length protein compared favorably with the shorter resilin generated previously from exon 1. The unusual elastomeric behavior of this protein suggests possible utility in biomaterials applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700