Face-Discriminating Dissolution Kinetics of Furosemide Single Crystals: In Situ Three-Dimensional Multi-Microscopy and Modeling
详细信息    查看全文
文摘
A versatile in situ multi-microscopy approach to study the dissolution kinetics of single crystals is described, using the loop diuretic drug furosemide as a testbed to demonstrate the utility of the approach. Using optical microscopy and scanning ion-conductance microscopy in combination, the dissolution rate of individual crystallographically independent crystal faces can be measured quantitatively while providing a direct visualization of the evolution of crystal morphology in real time in three dimensions. Finite element method models using experimental data enables quantitative analysis of dissolution fluxes for individual faces and determination of the limiting process—mass transport or interfacial kinetics—that regulates dissolution. A key feature of the approach is that isolated crystals (typically <60 μm largest characteristic dimension) in solution during dissolution experience high and well-defined diffusion rates. The ability to obtain this quantitative information for individual crystal faces suggests a pathway to understanding crystal dissolution at the molecular level and regulating bioavailability, for example, through manipulation of crystal morphology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700