Investigation of Regeneration Kinetics in Quantum-Dots-Sensitized Solar Cells with Scanning Electrochemical Microscopy
详细信息    查看全文
文摘
A fast quantum dots (QDs) regeneration process is necessary for highly efficient QDs-sensitized solar cells. Herein, CdSe and CdS QDs regeneration rates (kQD鈥? in three redox electrolytes, which are triiodide and iodide ions (I3鈥?/sup>/I鈥?/sup>), Co(bpy)3(PF6)2 and Co(bpy)3(PF6)3 (Co3+/Co2+), and 1-methy-1-H-tetrazole-5-thiolate and its dimer (T2/T鈥?/sup>), have been first investigated with scanning electrochemical microscopy (SECM). The results reveal that the kinetics of QDs regeneration depends on the nature of the QDs and the redox shuttles presented in QDSSCs. For QDs of CdSe and CdS, the regeneration rate (kQD鈥? in the case of a T2/T鈥?/sup>-based electrolyte is about two times larger than that of Co3+/Co2+ and I3鈥?/sup>/I鈥?/sup>. Additionally, the kQD鈥?for CdSe is about two times larger than that of CdS in the same redox shuttle electrolyte, which could be due to a large driving force for the reaction between the exited state quantum dots (QD+) and redox electrolytes.

Keywords:

regeneration kinetics; scanning electrochemical microscopy; quantum dots; solar cell; interfacial charge transfer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700