Dual Intramolecular Charge-Transfer Fluorescence Derived from a Phenothiazine-Triphenyltriazine Derivative
详细信息    查看全文
文摘
A material containing a phenothiazine (PTZ) electron donor unit and 2,4,6-triphenyl-1,3,5-triazine (TRZ) electron acceptor unit, PTZ-TRZ, which exhibits thermally activated delayed fluorescence (TADF) was developed. Density functional theory calculations revealed the existence of two ground-state conformers with different energy gaps between the lowest singlet excited state and lowest triplet excited state (1.14 and 0.18 eV), which resulted from the distortion of PTZ, as confirmed by X-ray structure analysis. PTZ-TRZ in toluene solution showed two broad, structureless emissions, confirming the existence of two different excited states. From detailed analyses of the absorption and photoluminescence spectra, we determined that both emissions were intramolecular charge-transfer (ICT) fluorescence. Therefore, the excited-state conformers of PTZ-TRZ resulted in dual ICT fluorescence. Because previously reported dual fluorescence from single molecules involves locally excited and ICT fluorescence, the dual ICT fluorescence from PTZ-TRZ is novel. Temperature-dependence of transient PL spectra of a 2 wt % PTZ-TRZ-doped film in 3,3鈥?bis(N-carbazolyl)-1,1鈥?biphenyl measured by a streak camera revealed that the former and latter emissions were independent of and dependent on the film temperature, respectively. This confirms that the dual fluorescence involves TADF characteristics. An organic light-emitting diode containing PTZ-TRZ exhibited a maximum external quantum efficiency of 10.8 卤 0.5% with dual ICT fluorescence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700