Display of a Peptide Mimotope on a Crystalline Bacterial Cell Surface Layer (S-layer) Lattice for Diagnosis of Epstein–Barr Virus Infection
详细信息    查看全文
文摘
Fusion proteins based on the crystalline bacterial cell surface layer (S-layer) proteins SbpA from Bacillus sphaericus CCM 2177 and SbsB from Geobacillus stearothermophilus PV72/p2 and a peptide mimotope F1 that mimics an immunodominant epitope of Epstein–Barr virus (EBV) were designed and overexpressed in Escherichia coli. Constructs were designed such that the peptide mimotope was presented either at the C-terminus (SbpA/F1) or at the N-terminus (SbsB/F1) of the respective S-layer proteins. The resulting S-layer fusion proteins, SbpA/F1 and SbsB/F1, fully retained the intrinsic self-assembly capability of the S-layer moiety into monomolecular lattices. As determined by immunodot assays and ELISAs using monoclonal antibodies, the F1 mimotope was well-presented on the outer surface of the S-layer lattices and accessible for antibody binding. Further comparison of the two S-layer fusion proteins showed that the S-layer fusion protein SbpA/F1 had a higher antibody binding capacity than SbsB/F1 in aqueous solution and in immune sera, illustrating the importance of epitope orientation on the performance of solid-phase immunoassays. To assess the diagnostic values of S-layer mimotope fusion protein SbpA/F1, we screened a panel of 83 individual EBV IgM-positive, EBV negative, and potential cross-reactive sera for their reactivities. This resulted in 98.2% specificity and 89.3% sensitivity, and furthermore no cross-reactivity with related viral disease states including rheumatoid factor was observed. This study shows the potential of S-layer fusion proteins as a matrix for site-directed immobilization of small ligands in solid-phase immunoassays using EBV diagnostics as a model system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700