Tailoring Membrane Nanostructure and Charge Density for High Electrokinetic Energy Conversion Efficiency
详细信息    查看全文
文摘
The electrokinetic energy conversion (EKEC) of hydraulic work directly into electrical energy has been investigated in charged polymeric membranes with different pore charge densities and characteristic diameters of the nanoporous network. The membranes were synthesized from blends of nitrocellulose and sulfonated polystyrene (SPS) and were comprehensively characterized with respect to structure, composition, and transport properties. It is shown that the SPS can be used as a sacrificial pore generation medium to tune the pore size and membrane porosity, which in turn highly affects the transport properties of the membranes. Furthermore, it is shown that very high EKEC efficiencies (>35%) are encountered in a rather narrow window of the properties of the nanoporous membrane network, that is, with pore diameters of ca. 10 nm and pore charge densities of 4.6 × 102 to 1.5 × 103 mol SO3 m–3 for dilute solutions (0.03 M LiCl). The high absolute value of the efficiency combined with the determination of the optimal membrane morphology makes membrane-based EKEC devices a step closer to practical applications and high-performance membrane design less empirical.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700