Self-Assembly of Zr(C2O4)44鈥?/sup> Metallotectons and Bisimidazolium Cations: Influence of the Dication on H-Bonded Framework Dimensionality and Material Potentia
详细信息    查看全文
文摘
Assemblies involving [Zr(C2O4)4]4鈥?/sup> metallotectons (C2O42鈥?/sup> = oxalate) and linear, flexible, or V-shaped organic cations (H2-Lx)2+ derived from the 1,4-bisimidazol-1-ylbenzene molecule have been envisioned to elaborate porous frameworks based on ionic H-bonds. Five architectures of formula [{(H2-L1)2Zr(C2O4)4}路2H2O] (1), [{(H2-L2)2Zr(C2O4)4}路6H2O] (2), [{(H2-L3)2Zr(C2O4)4}路6H2O] (3), [{(H2-L4)2Zr(C2O4)4}路H2O] (4), and [{(H2-L5)2Zr(C2O4)4}路6H2O] (5) (with L1 = p-bis(imidazol-1-yl)benzene, L2 = p-bis(2-methylimidazol-1-yl)benzene, L3 = p-bis(imidazol-1-yl)-2,5-dimethylbenzene, L4 = p-bis(imidazol-1-ylmethyl)benzene, L5 = m-bis(imidazol-1-yl)benzene) have been obtained; 1鈥?b>3, and 5 show an open-framework. For all, the bisimidazolium cations (H2-Lx)2+ act as bridges between anionic complexes. Depending on the chemical features of the cation, various assembling patterns have been observed, yielding one-dimensional (1D) (2, 5) two-dimensional (2D) (1), or three-dimensional (3D) (3, 4) H-bonded networks. While interconnection of anionic metallotectons and organic cations generally affords grids with large apertures, 2D and 3D H-bonded frameworks show the lowest potential porosities (and even compact architectures) because of interpenetration. Highest potential solvent accessible voids (up to 20%) are found for the 1D H-bonded assemblages because interpenetration does not occur for these materials. Crystal structures for all five architectures as well as their thermal stabilities are reported. Actual porosity has been evidenced for one of them by solving the structure of the guest free architecture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700