Twinning and Twisting of Tri- and Bilayer Graphene
详细信息    查看全文
文摘
The electronic, optical, and mechanical properties of bilayer and trilayer graphene vary with their structure, including the stacking order and relative twist, providing novel ways to realize useful characteristics not available to single layer graphene. However, developing controlled growth of bilayer and trilayer graphene requires efficient large-scale characterization of multilayer graphene structures. Here, we use dark-field transmission electron microscopy for rapid and accurate determination of key structural parameters (twist angle, stacking order, and interlayer spacing) of few-layer CVD graphene. We image the long-range atomic registry for oriented bilayer and trilayer graphene, find that it conforms exclusively to either Bernal or rhombohedral stacking, and determine their relative abundances. In contrast, our data on twisted multilayers suggest the absence of such long-range atomic registry. The atomic registry and its absence are consistent with the two different strain-induced deformations we observe; by tilting the samples to break mirror symmetry, we find a high density of twinned domains in oriented multilayer graphene, where multiple domains of two different stacking configurations coexist, connected by discrete twin boundaries. In contrast, individual layers in twisted regions continuously stretch and shear independently, forming elaborate Moir茅 patterns. These results, and the twist angle distribution in our CVD graphene, can be understood in terms of an angle-dependent interlayer potential model.

Keywords:

Bilayer graphene; twisted bilayer graphene; dark-field TEM; domain boundary; twin boundary; interlayer interaction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700