Energetic Diagrams and Structural Properties of Monohaloacetylenes HC≡CX (X = F, Cl, Br)
详细信息    查看全文
  • 作者:D. Khiri ; M. Hochlaf ; G. Chambaud
  • 刊名:Journal of Physical Chemistry A
  • 出版年:2016
  • 出版时间:August 4, 2016
  • 年:2016
  • 卷:120
  • 期:30
  • 页码:5985-5992
  • 全文大小:295K
  • 年卷期:0
  • ISSN:1520-5215
文摘
Highly correlated electronic wave functions within the Multi Reference Configuration Interaction (MRCI) approach are used to study the stability and the formation processes of the monohaloacetylenes HCCX and monohalovinylidenes C2HX (X = F, Cl, Br) in their electronic ground state. These tetra-atomics can be formed through the reaction of triatomic fragments C2F, C2Cl, and C2Br with a hydrogen atom or of C2H with halogen atoms via barrierless reactions, whereas the reactions between the diatomics [C2 + HX] need to overcome barriers of 1.70, 0.89, and 0.58 eV for X = F, Cl, and Br. It is found that the linear HCCX isomers, in singlet symmetry, are more stable than the singlet C2HX iso-forms by 1.995, 2.083, and 1.958 eV for X = F, Cl, and Br. The very small isomerization barriers from iso to linear forms are calculated 0.067, 0.044, and 0.100 eV for F, Cl, and Br systems. The dissociation energies of the HCCX systems (without ZPE corrections), resulting from the breaking of the CX bond, are calculated to be 5.647, 4.691, and 4.129 eV for X = F, Cl, Br, respectively. At the equilibrium geometry of the X1Σ+ state of HCCX, the vertical excitation energies in singlet and triplet symmetries are all larger than the respective dissociation energies. Stable excited states are found only as 3A′, 3A″, and 1A″ monohalovinylidene structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700