Intramolecular Electron Transfer in Bipyridinium Disulfides
详细信息    查看全文
文摘
Reductive cleavage of disulfide bonds is an important step in many biological and chemical processes. Whether cleavage occurs stepwise or concertedly with electron transfer is of interest. Also of interest is whether the disulfide bond is reduced directly by intermolecular electron transfer from an external reducing agent or mediated intramolecularly by internal electron transfer from another redox-active moiety elsewhere within the molecule. The electrochemical reductions of 4,4鈥?bipyridyl-3,3鈥?disulfide (1) and the di-N-methylated derivative (22+) have been studied in acetonitrile. Simulations of the cyclic voltammograms in combination with DFT (density functional theory) computations provide a consistent model of the reductive processes. Compound 1 undergoes reduction directly at the disulfide moiety with a substantially more negative potential for the first electron than for the second electron, resulting in an overall two-electron reduction and rapid cleavage of the S鈥揝 bond to form the dithiolate. In contrast, compound 22+ is reduced at less negative potential than 1 and at the dimethyl bipyridinium moiety rather than at the disulfide moiety. Most interesting, the second reduction of the bipyridinium moiety results in a fast and reversible intramolecular two-electron transfer to reduce the disulfide moiety and form the dithiolate. Thus, the redox-active bipyridinium moiety provides a low energy pathway for reductive cleavage of the S鈥揝 bond that avoids the highly negative potential for the first direct electron reduction. Following the intramolecular two-electron transfer and cleavage of the S鈥揝 bond the bipyridinium undergoes two additional reversible reductions at more negative potentials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700