Assessment of Microbial Fuel Cell Configurations and Power Densities
详细信息    查看全文
文摘
Different microbial electrochemical technologies are being developed for many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions about whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems remain. It is shown here that configuration and fuel (pure chemicals in laboratory media vs actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of the reactor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700