Plastic Deformation of Semicrystalline Polyethylene by X-ray Scattering: Comparison with Atomistic Simulations
详细信息    查看全文
文摘
Plastic deformation of uniaxially oriented polyethylene (PE) fiber has been examined by small and wide angle synchrotron X-ray scattering. Morphology changes of the lamellar stack with deformation beyond yielding have been characterized and quantified. Atomistic simulations of tensile deformation of the lamellar stack in the longitudinal direction compare favorably to the experimentally observed morphological changes in the PE fiber. Experimental deformations at 100 掳C exhibit responses comparable to those observed by simulation of deformation with constant total volume at 77 掳C and a strain rate of 5 脳 106 s鈥?. Experimental deformations of the PE fiber at 25 掳C were found to be comparable to simulated tensile deformation with constant lateral dimensions at 77 掳C and a strain rate of 5 脳 107 s鈥?. Cavitation in the interlamellar region was found experimentally in the PE fiber deforming at room temperature as predicted by simulation with constant lateral dimensions at the higher strain rate. Melting, recrystallization, and removal of entanglements observed in the PE fiber deformation at 100 掳C agree with the simulation results of a constant volume deformation at the slower strain rate. The ability to define the deformation behavior of PE at room and at high temperatures through simulation offers unique opportunities to examine how the interlamellar amorphous topology affects PE deformation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700