Effective Passivation of Nanostructured TiO2 Interfaces with PEG-Based Oligomeric Coadsorbents To Improve the Performance of Dye-Sensitized Solar Cells
详细信息    查看全文
文摘
A novel poly(ethylene glycol) (PEG) based oligomeric coadsorbent was employed to passivate TiO2 photoanodes resulting in the large increase in both open-circuit voltage (Voc) and short-circuit current density (Jsc) primarily because of the reduced electron recombination by the effective coverage of vacant sites as well as the negative band-edge shift of TiO2. The effective suppression of electron recombination was evidenced by electrochemical impedance spectroscopy (EIS) and by stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV). The work function measurements also showed that the existence of coadsorbents on TiO2 interfaces is capable of shifting the band-edge of TiO2 photoanodes upwardly resulting in the increase in photovoltage. In addition, the coadsorbent was proven to be effective even in the presence of common additives such as LiI, 4-tert-butylpyridine, and guanidinium thiocyanate. The effect of Li+ cation trapping by ethylene oxide units of the coadsorbent was particularly notable to significantly increase Voc at a small expense of Jsc. Consequently, the introduction of novel PEG-based oligomeric coadsorbents for TiO2 photoanodes is quite effective in the improvement of photovoltaic performance because of the simultaneous increase in both Voc and Jsc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700