Mechanical Stabilization Effect of Water on a Membrane-like System
详细信息    查看全文
文摘
The penetration resistance of a prototypical model-membrane system (HS-(CH2)11-OH self-assembled monolayer (SAM) on Au(111)) to the tip of an atomic force microscope (AFM) is investigatedin the presence of different solvents. The compressibility (i.e., height vs tip load) of the HS-(CH2)11-OHSAM is studied differentially, with respect to a reference structure. The reference consists of hydrophobicalkylthiol molecules (HS-(CH2)17-CH3) embedded as nanosized patches into the hydrophilic SAM bynanografting, an AFM-assisted nanolithography technique. We find that the penetration resistance of thehydrophilic SAM depends on the nature of the solvent and is much higher in the presence of water thanin 2-butanol. In contrast, no solvent-dependent effect is observed in the case of hydrophobic SAMs. Weargue that the mechanical resistance of the hydroxyl-terminated SAM is a consequence of the structuralorder of the solvent-SAM interface, as suggested by our molecular dynamics simulations. The simulationsshow that in the presence of 2-butanol the polar head groups of the HS-(CH2)11-OH SAM, which bindonly weakly to the solvent molecules, try to bind to each other, disrupting the local order at the interface.On the contrary, in the presence of water the polar head groups bind preferentially to the solvent that, inturn, mediates the release of the surface strain, leading to a more ordered interface. We suggest that themechanical stabilization effect induced by water may be responsible for the stability of even more complex,real membrane systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700