Light-Harvesting Action Spectroscopy of Single Conjugated Polymer Nanowires
详细信息    查看全文
文摘
We study exciton migration in single molecular nanowires, dye-endcapped multichromophoric conjugated polymers, as a function of excitation energy. This approach reveals the actual molecular absorption properties, uncovering the molecules within an ensemble and the chromophores within a molecule which contribute to absorption at a given wavelength. As the excitation energy is raised, an increasing number of polymers exhibit energy transfer suggesting that, in contrast to the emission spectrum, the absorption of a single chain under energy transfer conditions can be very broad even at 5 K. At the same time, the polarization anisotropy in excitation decreases due to an increase in the number of noncolinear chromophores involved in absorption. Power and wavelength-dependent measurements clearly discern the exciton blockade effect that gives rise to strong fluctuations of energy transfer. Although the polymer and endcap constitute nominally discrete spectroscopic entities, we are able to identify a subtle influence of the primary backbone exciton energy on the ultimate endcap emission. This demonstration of interchromophoric cooperativity provides a direct realization of how nonradiative energy dissipation in one nanoscale unit influences the spectroscopy of another.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700