Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%
详细信息    查看全文
文摘
A tailor-made medium-band gap fluorinated quinoxaline-based conjugated polymer of PBDT-TFQ was designed and synthesized as a donor material for bulk-heterojunction (BHJ) solar cells. This polymer is possessed of an intrachain donor鈥揳cceptor architecture and exhibits a broad and strong absorption spectrum across the entire UV鈥搗is region. The introduction of F atoms with high electron affinity to the quinoxaline moiety is effective in further lowering both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels of PBDT-TFQ to attain higher open-circuit voltage (Voc). With an optimized blend ratio of PBDT-TFQ:PC71BM (1:1, w/w), a high power conversion efficiency (PCE) of 8.0% was obtained, with a Voc of 0.76 V, a short-circuit current density (Jsc) of 18.2 mA cm鈥?, and a fill factor (FF) of 58.1% under AM 1.5G irradiation. The resulting copolymer reveals an outstanding Jsc value, arising from the higher hole mobility of PBDT-TFQ, together with the better continuous percolation pathways within the polymer blend for efficient exciton dissociation and charge transport.

Keywords:

solar cells; photovoltaic; quinoxaline; semiconductor; bulk heterojunction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700