One-Step Synthesis of Cagelike Hollow Silica Spheres with Large Through-Holes for Macromolecule Delivery
详细信息    查看全文
  • 作者:Shengnan Wang ; Min Chen ; Limin Wu
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:December 7, 2016
  • 年:2016
  • 卷:8
  • 期:48
  • 页码:33316-33325
  • 全文大小:716K
  • ISSN:1944-8252
文摘
A facile, one-step method to prepare cagelike hollow silica nanospheres with large through-holes (HSNLs) using a lysozyme-assisted O/W miniemulsion technique is presented. The tetraethoxysilane (TEOS)–xylene mixture forms oil droplets which are stabilized by the cationic surfactant cetyltrimethylammonium bromide (CTAB), cosurfactant hexadecane (HD), and protein lysozyme. HSNLs (with diameter of 300–460 nm) with large through-holes (10–30 nm) were obtained directly after ultrasonic treatment and aging. Lysozyme can not only stabilize the oil/water interface, assist the hydrolysis of TEOS, and interact with silica particles to assemble into silica-lysozyme clusters but also contribute to the formation of through-holes due to its hydrophilicity variation at different pH conditions. A possible new mechanism called the interface desorption method is proposed to explain the formation of the through-holes. To confirm the effectiveness of large through-holes in delivering large molecules, bovine serum albumin (BSA, 21 × 4 × 14 nm3) was chosen as a model guest molecule; HSNLs showed much higher loading capacity compared with common hollow mesoporous silica nanospheres (HMSNs). The release of BSA can be well controlled by wrapping HSNLs with a heat-sensitive phase change material (1-tetradecanol). Cell toxicity was also conducted with a Cell Counting Kit-8 (CCK-8) assay to roughly evaluate the feasibility of HSNLs in biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700