Controlled/Living ab Initio Emulsion Polymerization via a Glucose RAFTstab: Degradable Cross-Linked Glyco-Particles for Concanavalin A/FimH Conjugations to Cluster E. coli
详细信息    查看全文
文摘
Glyco-particles bearing glucose units have been prepared via a one-step controlled/living ab initio cross-linking emulsion polymerization of styrene based on self-assembly via a glucose RAFTstab (reversible addition−fragmentation chain transfer colloidal stabilizer). The RAFTstab was synthesized from the monomer 2-(methacrylamido)glucopyranose (MAG) and the hydrophobic trithiocarbonate RAFT agent S-methoxycarbonylphenylmethyl dodecyltrithiocarbonate (MCPDT). In order to obtain glyco-particles stable for biomedical applications, a degradable bis(2-acryloyloxyethyl) disulfide cross-linker (disulfide diacrylate, DSDA) was employed in the emulsion polymerization. The cross-linked glyco-particles were stable in N,N-dimethylacetamide (DMAc), in contrast to the corresponding non-cross-linked glyco-particles which disintegrate to form linear glycopolymers in solution. The cross-linked particles underwent reductive degradation into the constituent linear (primary) chains upon treatment with 1,4-dithiothreitol (DDT). The bioactivity of the glucose moieties on the surface of the particles was examined using two classes of lectins, namely plant lectin (Concanavalin A, Canavalia ensiformis) and bacteria lectin (fimH, from Escherichia coli). Successful binding was demonstrated, thus illustrating that these particles have potential as “smart” materials in biological systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700