Fibrillar vs Crystalline Full-Length β-2-Microglobulin Studied by High-Resolution Solid-State NMR Spectroscopy
详细信息    查看全文
文摘
Elucidating the fine structure of amyloid fibrils as well as understanding their processes of nucleation and growth remains a difficult yet essential challenge, directly linked to our current poor insight into protein misfolding and aggregation diseases. Here we consider β-2-microglobulin (β2m), the MHC-1 light chain component responsible for dialysis-related amyloidosis, which can give rise to amyloid fibrils in vitro under various experimental conditions, including low and neutral pH. We have used solid-state NMR to probe the structural features of fibrils formed by full-length β2m (99 residues) at pH 2.5 and pH 7.4. A close comparison of 2D 13C−13C and 15N−13C correlation experiments performed on β2m, in both the crystalline and fibrillar states, suggests that, in spite of structural changes affecting the protein loops linking the protein β-strands, the protein chain retains a substantial share of its native secondary structure in the fibril assembly. Moreover, variations in the chemical shifts of the key Pro32 residue suggest the involvement of a cis−trans isomerization in the process of β2m fibril formation. Lastly, the analogy of the spectra recorded on β2m fibrils grown at different pH values hints at a conserved architecture of the amyloid species thus obtained.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700